
Building a (Core)
Foundation

Rob Napier

A little background

• Mac OS X since 10.4

• iPhoneOS since release

• Cisco Jabber, The Daily, RNCryptor

• Focus on low-level

• Today: Mac developer for...

KACE

ROB NAPIER MUGUNTH KUMAR
NAPIER
KUMAR

iOS 5
PROGRAMMING

iOS 5 PROGRAMMING
PUSHING THE LIMITS

PUSHING THE LIMITS
Advanced Application Development
for Apple iPhone®, iPad®, and iPod Touch®

BUILD AMAZING MOBILE APPS WITH THE iOS SDK

Bookstore Category COMPUTERS/PROGRAMMING/SOFTWARE DEVELOPMENT

Price £29.99/ /US$44.99/CAN$53.99

Visit www.wiley.com/go/ptl/ios5programming to download code files.

Interacting with the Objective-C® Runtime
Introspecting objects and modifying classes
at runtime
Controlling multitasking
Running on multiple platforms
Making optimal use of Security Services
Creating amazing animations

Using advanced text layout with Core Text
Creating complex reusable table view layouts
Using blocks to implement functional programming
Creating high performance apps for any RESTful web service
Implementing superfast caching for regions with spotty
network connectivity
Optimizing cash flow with In-App Purchases

iOS 5 Programming Pushing the Limits is your total guide to creating standout apps for the iPad, iPhone, and iPod Touch. Veteran mobile developers
Rob Napier and Mugunth Kumar take you beyond the basics to cover advanced topics you won’t find in most other iOS development books. From
the ins and outs of the Core Foundation API, to maximizing speed and performance with Grand Central Dispatch, to storyboarding your UI flow, they
guide you step by step through all the knotty stuff you need to master to program fun, fully-functional, high-performance apps.

Topics include:

Why settle for adequate mobile apps when you can create extraordinary ones? Get iOS 5 Programming Pushing the Limits and expand your
development horizons.

Cover design by Dan Jubb

ROB NAPIER has been developing for iOS platforms since the first SDK release, working on products such as The Daily and Cisco Mobile.
He is a major contributor to Stack Overflow and writes the Cocoaphony blog (cocoaphony.com).

MUGUNTH KUMAR is an independent iOS consultant working on a variety of iOS apps, including some for Goodyear and Mastercard. Two
of his apps have reached the Top 5 apps in the Singapore App Store and have been featured in various magazines and newspapers. He writes
iOS tutorials on his blog, blog.mugunthkumar.com.

Chapter 19

Core Foundation?

• Data structures for all those powerful
frameworks with “Core” in their name.

• The awesomeness of Objective-C. The
speed of C.

Where are we?*

Core OS / Darwin

Core Foundation

Foundation

UIKit

*Simplified, but close enough

Who cares?

• You want to use those powerful
frameworks, right?

• Did I mention, it can do a lot of things
Cocoa can’t?

• And C is fast. Yes, very fast.

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Real Types

typedef void * CFTypeRef;

typedef const struct __CFString * CFStringRef;

typedef struct __CFString * CFMutableStringRef;

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Memory Management

• If you Create or Copy an object, you are an
owner

• If you do not Create or Copy an object, you are
not an owner.

• If you want to prevent the object from being
destroyed, you must become an owner by calling
CFRetain()

• If you are an owner of an object, you must call
CFRelease() when you are done with it

CFRelease != -release

• CFRelease makes us cry

• CFRelease(NULL) crashes

• There are a dozen wrappers on
CFRelease() that fix that

• You will certainly make your own

• And call them SAFE_RELEASE() like
everyone else

autorelease?

• There is no autorelease

:(

Allocators

• How you want your memory?
CFCreateBlah(Allocator, param, param)

• 99.9% of the time you want NULL

• Sometimes you want kCFAllocatorMalloc for
memory that was created with malloc()

• Occasionally you want kCFAllocatorNull to do
nothing

• Everything else is incredibly obscure

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Introspection

•CFGetTypeID() <=>
CFArrayGetTypeID()

•CFCopyDescription()

•CFShow()

•CFShowStr()

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Strings

• Constants: CFSTR()

 CFStringRef foo = CFSTR(“foo”);

•CFStringCreateWithCString()

Convert CFStringRef to cstring

char * MYCFStringCopyUTF8String(CFStringRef aString) {
 if (aString == NULL) {
 return NULL;
 }
 CFIndex length = CFStringGetLength(aString);
 CFIndex maxSize =
 CFStringGetMaximumSizeForEncoding(length,
 kCFStringEncodingUTF8);
 char *buffer = (char *)malloc(maxSize);
 if (CFStringGetCString(aString, buffer, maxSize,
 kCFStringEncodingUTF8)) {
 return buffer;
 }

 free(buffer);
 return NULL;
}

Convert non-const cstring to
CStringRef

Consider the ownership:

const char *cstr = “Hello”;
char *bytes = malloc(strlen(cstr) + 1);
strcpy(bytes, cstr);

CFStringRef str =
 CFStringCreateWithCStringNoCopy(NULL, bytes,
 kCFStringEncodingUTF8,
 kCFAllocatorMalloc);
CFShow(str);
CFRelease(str);

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

CFArray

CFStringRef strings[3] =
 { CFSTR(“One”), CFSTR(“Two”), CFSTR(“Three”) };
CFArrayRef array = CFArrayCreate(NULL, (void *)strings, 3,
 &kCFTypeArrayCallBacks);
CFShow(array);
CFRelease(array);

CFMutableArrayRef array = CFArrayCreateMutable(NULL, 0,
 &kCFTypeArrayCallBacks);

CFDictionary

#define kCount 3
CFStringRef keys[kCount] =
 { CFSTR(“One”), CFSTR(“Two”), CFSTR(“Three”) };
CFStringRef values[kCount] =
 { CFSTR(“Foo”), CFSTR(“Bar”), CFSTR(“Baz”) };
CFDictionaryRef dict =
 CFDictionaryCreate(NULL,
 (void *)keys,
 (void *)values,
 kCount,
 &kCFTypeDictionaryKeyCallBacks,
 &kCFTypeDictionaryValueCallBacks);

Others

•CFTree

•CFBinaryHeap

•CFBitVector

Callbacks

•retain

•release

•copyDescription

•equal

•hash

Non-retaining CFArray

CFArrayCallBacks nrCallbacks = kCFTypeArrayCallBacks;
nrCallbacks.retain = NULL;
nrCallbacks.release = NULL;
CFMutableArrayRef nrArray = CFArrayCreateMutable(NULL, 0,
 &nrCallbacks);

CFStringRef string =
 CFStringCreateWithCString(NULL, “Stuff”,
 kCFStringEncodingUTF8);
CFArrayAppendValue(nrArray, string);
CFRelease(nrArray);
CFRelease(string);

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Toll-free Bridging

NSArray *nsArray = [NSArray arrayWithObject:@”Foo”];
printf(“%ld\n”, CFArrayGetCount((__bridge CFArrayRef)nsArray));

CFMutableArrayRef cfArray =
 CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
CFArrayAppendValue(cfArray, CFSTR(“Foo”)); NSLog(@”%ld”,
[(__bridge id)cfArray count]); CFRelease(cfArray);

How does that even work?

ObjC:

typedef struct objc_object {
 Class isa;
} *id;

CF:

typedef struct __CFRuntimeBase {
 uintptr_t _cfisa
 ...
}

The CF Magic

CFIndex CFStringGetLength(CFStringRef str) {
 CF_OBJC_FUNCDISPATCH0(__kCFStringTypeID,
 CFIndex, str,
 “length”);
 __CFAssertIsString(str);
 return __CFStrLength(str)
}

The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC

Converting to ARC

- (NSString *)firstName {
 CFStringRef cfString = CFStringCreate...;
 return CFBridgingRelease(cfString);
}

CFStringRef cfStr = CFBridgingRetain([nsString copy]);
...
CFRelease(cfStr);

Bringing It Home

• Core Foundation is your friend

• 90% of Core Foundation is Foundation
minus autorelease (and minus ARC)

• Core Foundation, as a rule, is more flexible
and faster than the ObjC equivalent

• Go Forth and Core!

http://iosptl.com

