
Building a (Core) 
Foundation

Rob Napier



A little background

• Mac OS X since 10.4

• iPhoneOS since release

• Cisco Jabber, The Daily, RNCryptor

• Focus on low-level

• Today: Mac developer for...
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Core Foundation?

• Data structures for all those powerful 
frameworks with “Core” in their name.

• The awesomeness of Objective-C. The 
speed of C.



Where are we?*

Core OS / Darwin

Core Foundation

Foundation

UIKit

*Simplified, but close enough



Who cares?

• You want to use those powerful 
frameworks, right?

• Did I mention, it can do a lot of things 
Cocoa can’t?

• And C is fast. Yes, very fast.



The Path

• The real types

• Memory management

• Introspection

• Strings

• Collections

• Toll-free Bridging

• ARC
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Real Types

typedef void * CFTypeRef;

typedef const struct __CFString * CFStringRef;

typedef struct __CFString * CFMutableStringRef;
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Memory Management

• If you Create or Copy an object, you are an 
owner 

• If you do not Create or Copy an object, you are 
not an owner.

• If you want to prevent the object from being 
destroyed, you must become an owner by calling 
CFRetain()

• If you are an owner of an object, you must call 
CFRelease() when you are done with it



CFRelease != -release

• CFRelease makes us cry

• CFRelease(NULL) crashes

• There are a dozen wrappers on 
CFRelease() that fix that

• You will certainly make your own

• And call them SAFE_RELEASE() like 
everyone else



autorelease?

• There is no autorelease

:(



Allocators

• How you want your memory?
CFCreateBlah(Allocator, param, param)

• 99.9% of the time you want NULL

• Sometimes you want kCFAllocatorMalloc for 
memory that was created with malloc()

• Occasionally you want kCFAllocatorNull to do 
nothing

• Everything else is incredibly obscure
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Introspection

•CFGetTypeID() <=> 
CFArrayGetTypeID()

•CFCopyDescription()

•CFShow()

•CFShowStr()
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Strings

• Constants: CFSTR()

  CFStringRef foo = CFSTR(“foo”);

•CFStringCreateWithCString()



Convert CFStringRef to cstring

char * MYCFStringCopyUTF8String(CFStringRef aString) {
    if (aString == NULL) {
       return NULL;
     }
     CFIndex length = CFStringGetLength(aString);
     CFIndex maxSize =
       CFStringGetMaximumSizeForEncoding(length,
                                         kCFStringEncodingUTF8);
     char *buffer = (char *)malloc(maxSize);
     if (CFStringGetCString(aString, buffer, maxSize,
                            kCFStringEncodingUTF8)) {
       return buffer;
     }

     free(buffer);
     return NULL;
}



Convert non-const cstring to 
CStringRef

Consider the ownership:

const char *cstr = “Hello”;
char *bytes = malloc(strlen(cstr) + 1);
strcpy(bytes, cstr);

CFStringRef str =
   CFStringCreateWithCStringNoCopy(NULL, bytes,
                                   kCFStringEncodingUTF8,
                                   kCFAllocatorMalloc);
CFShow(str);
CFRelease(str);
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CFArray

CFStringRef strings[3] =
     { CFSTR(“One”), CFSTR(“Two”), CFSTR(“Three”) };
CFArrayRef array = CFArrayCreate(NULL, (void *)strings, 3,
                                 &kCFTypeArrayCallBacks);
CFShow(array);
CFRelease(array);

CFMutableArrayRef array = CFArrayCreateMutable(NULL, 0,
                                   &kCFTypeArrayCallBacks);



CFDictionary

#define kCount 3
CFStringRef keys[kCount] =
         { CFSTR(“One”), CFSTR(“Two”), CFSTR(“Three”) };
CFStringRef values[kCount] =
         { CFSTR(“Foo”), CFSTR(“Bar”), CFSTR(“Baz”) };
CFDictionaryRef dict =
  CFDictionaryCreate(NULL,
                     (void *)keys,
                     (void *)values,
                     kCount,
                     &kCFTypeDictionaryKeyCallBacks,
                     &kCFTypeDictionaryValueCallBacks);



Others 

•CFTree

•CFBinaryHeap

•CFBitVector



Callbacks

•retain

•release

•copyDescription

•equal

•hash



Non-retaining CFArray

CFArrayCallBacks nrCallbacks = kCFTypeArrayCallBacks;
nrCallbacks.retain = NULL;
nrCallbacks.release = NULL;
CFMutableArrayRef nrArray = CFArrayCreateMutable(NULL, 0,
                                                 &nrCallbacks);

CFStringRef string =
  CFStringCreateWithCString(NULL, “Stuff”,
                            kCFStringEncodingUTF8);
CFArrayAppendValue(nrArray, string);
CFRelease(nrArray);
CFRelease(string);
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Toll-free Bridging

NSArray *nsArray = [NSArray arrayWithObject:@”Foo”];
printf(“%ld\n”, CFArrayGetCount((__bridge CFArrayRef)nsArray));

CFMutableArrayRef cfArray =
     CFArrayCreateMutable(NULL, 0, &kCFTypeArrayCallBacks);
CFArrayAppendValue(cfArray, CFSTR(“Foo”)); NSLog(@”%ld”, 
[(__bridge id)cfArray count]); CFRelease(cfArray);



How does that even work?

ObjC:

typedef struct objc_object {
  Class isa;
} *id;

CF:

typedef struct __CFRuntimeBase {
  uintptr_t _cfisa
  ...
}



The CF Magic

CFIndex CFStringGetLength(CFStringRef str) {
  CF_OBJC_FUNCDISPATCH0(__kCFStringTypeID,
                        CFIndex, str,
                        “length”);
  __CFAssertIsString(str);
  return __CFStrLength(str)
}
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Converting to ARC

- (NSString *)firstName {
  CFStringRef cfString = CFStringCreate...;
  return CFBridgingRelease(cfString);
}

CFStringRef cfStr = CFBridgingRetain([nsString copy]);
...
CFRelease(cfStr);



Bringing It Home

• Core Foundation is your friend

• 90% of Core Foundation is Foundation 
minus autorelease (and minus ARC)

• Core Foundation, as a rule, is more flexible 
and faster than the ObjC equivalent

• Go Forth and Core!



http://iosptl.com


